\(\int \frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {\sec (c+d x)}} \, dx\) [630]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (warning: unable to verify)
   Fricas [C] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 25, antiderivative size = 67 \[ \int \frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {\sec (c+d x)}} \, dx=\frac {2 E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right ) \sqrt {a+b \sec (c+d x)}}{d \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \sqrt {\sec (c+d x)}} \]

[Out]

2*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2)*(a/(a+b))^(1/2))*(a+b*s
ec(d*x+c))^(1/2)/d/((b+a*cos(d*x+c))/(a+b))^(1/2)/sec(d*x+c)^(1/2)

Rubi [A] (verified)

Time = 0.11 (sec) , antiderivative size = 67, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.120, Rules used = {3941, 2734, 2732} \[ \int \frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {\sec (c+d x)}} \, dx=\frac {2 \sqrt {a+b \sec (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{d \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}}} \]

[In]

Int[Sqrt[a + b*Sec[c + d*x]]/Sqrt[Sec[c + d*x]],x]

[Out]

(2*EllipticE[(c + d*x)/2, (2*a)/(a + b)]*Sqrt[a + b*Sec[c + d*x]])/(d*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*Sqrt[
Sec[c + d*x]])

Rule 2732

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[2*(Sqrt[a + b]/d)*EllipticE[(1/2)*(c - Pi/2
+ d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2734

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 3941

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)], x_Symbol] :> Dist[Sqrt[a +
 b*Csc[e + f*x]]/(Sqrt[d*Csc[e + f*x]]*Sqrt[b + a*Sin[e + f*x]]), Int[Sqrt[b + a*Sin[e + f*x]], x], x] /; Free
Q[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {\sqrt {a+b \sec (c+d x)} \int \sqrt {b+a \cos (c+d x)} \, dx}{\sqrt {b+a \cos (c+d x)} \sqrt {\sec (c+d x)}} \\ & = \frac {\sqrt {a+b \sec (c+d x)} \int \sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}} \, dx}{\sqrt {\frac {b+a \cos (c+d x)}{a+b}} \sqrt {\sec (c+d x)}} \\ & = \frac {2 E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right ) \sqrt {a+b \sec (c+d x)}}{d \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \sqrt {\sec (c+d x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.24 (sec) , antiderivative size = 67, normalized size of antiderivative = 1.00 \[ \int \frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {\sec (c+d x)}} \, dx=\frac {2 E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right ) \sqrt {a+b \sec (c+d x)}}{d \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \sqrt {\sec (c+d x)}} \]

[In]

Integrate[Sqrt[a + b*Sec[c + d*x]]/Sqrt[Sec[c + d*x]],x]

[Out]

(2*EllipticE[(c + d*x)/2, (2*a)/(a + b)]*Sqrt[a + b*Sec[c + d*x]])/(d*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*Sqrt[
Sec[c + d*x]])

Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(868\) vs. \(2(90)=180\).

Time = 3.37 (sec) , antiderivative size = 869, normalized size of antiderivative = 12.97

method result size
default \(\frac {2 \left (\sqrt {\frac {a -b}{a +b}}\, a \left (1-\cos \left (d x +c \right )\right )^{3} \csc \left (d x +c \right )^{3}-\sqrt {\frac {a -b}{a +b}}\, b \left (1-\cos \left (d x +c \right )\right )^{3} \csc \left (d x +c \right )^{3}+\sqrt {-\frac {a \left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-b \left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-a -b}{a +b}}\, \sqrt {\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}+1}\, \operatorname {EllipticF}\left (\sqrt {\frac {a -b}{a +b}}\, \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), \sqrt {-\frac {a +b}{a -b}}\right ) a -\sqrt {-\frac {a \left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-b \left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-a -b}{a +b}}\, \sqrt {\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}+1}\, \operatorname {EllipticF}\left (\sqrt {\frac {a -b}{a +b}}\, \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), \sqrt {-\frac {a +b}{a -b}}\right ) b -\sqrt {-\frac {a \left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-b \left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-a -b}{a +b}}\, \sqrt {\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}+1}\, \operatorname {EllipticE}\left (\sqrt {\frac {a -b}{a +b}}\, \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), \sqrt {-\frac {a +b}{a -b}}\right ) a +\sqrt {-\frac {a \left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-b \left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-a -b}{a +b}}\, \sqrt {\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}+1}\, \operatorname {EllipticE}\left (\sqrt {\frac {a -b}{a +b}}\, \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), \sqrt {-\frac {a +b}{a -b}}\right ) b -\sqrt {\frac {a -b}{a +b}}\, a \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )-\sqrt {\frac {a -b}{a +b}}\, b \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )\right ) \sqrt {\frac {a \left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-b \left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-a -b}{\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}}}{d \sqrt {\frac {a -b}{a +b}}\, \left (a \left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-b \left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-a -b \right ) \sqrt {-\frac {\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}+1}{\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}}}\) \(869\)
risch \(\text {Expression too large to display}\) \(1108\)

[In]

int((a+b*sec(d*x+c))^(1/2)/sec(d*x+c)^(1/2),x,method=_RETURNVERBOSE)

[Out]

2/d/((a-b)/(a+b))^(1/2)*(((a-b)/(a+b))^(1/2)*a*(1-cos(d*x+c))^3*csc(d*x+c)^3-((a-b)/(a+b))^(1/2)*b*(1-cos(d*x+
c))^3*csc(d*x+c)^3+(-(a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)^2-a-b)/(a+b))^(1/2)*((1-co
s(d*x+c))^2*csc(d*x+c)^2+1)^(1/2)*EllipticF(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))
*a-(-(a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)^2-a-b)/(a+b))^(1/2)*((1-cos(d*x+c))^2*csc(
d*x+c)^2+1)^(1/2)*EllipticF(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*b-(-(a*(1-cos(d
*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)^2-a-b)/(a+b))^(1/2)*((1-cos(d*x+c))^2*csc(d*x+c)^2+1)^(1/2
)*EllipticE(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a+(-(a*(1-cos(d*x+c))^2*csc(d*x
+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)^2-a-b)/(a+b))^(1/2)*((1-cos(d*x+c))^2*csc(d*x+c)^2+1)^(1/2)*EllipticE(((a-
b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*b-((a-b)/(a+b))^(1/2)*a*(-cot(d*x+c)+csc(d*x+c)
)-((a-b)/(a+b))^(1/2)*b*(-cot(d*x+c)+csc(d*x+c)))*((a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x
+c)^2-a-b)/((1-cos(d*x+c))^2*csc(d*x+c)^2-1))^(1/2)/(a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d*
x+c)^2-a-b)/(-((1-cos(d*x+c))^2*csc(d*x+c)^2+1)/((1-cos(d*x+c))^2*csc(d*x+c)^2-1))^(1/2)

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.11 (sec) , antiderivative size = 355, normalized size of antiderivative = 5.30 \[ \int \frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {\sec (c+d x)}} \, dx=\frac {-i \, \sqrt {2} \sqrt {a} b {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, \frac {3 \, a \cos \left (d x + c\right ) + 3 i \, a \sin \left (d x + c\right ) + 2 \, b}{3 \, a}\right ) + i \, \sqrt {2} \sqrt {a} b {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, \frac {3 \, a \cos \left (d x + c\right ) - 3 i \, a \sin \left (d x + c\right ) + 2 \, b}{3 \, a}\right ) + 3 i \, \sqrt {2} a^{\frac {3}{2}} {\rm weierstrassZeta}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, \frac {3 \, a \cos \left (d x + c\right ) + 3 i \, a \sin \left (d x + c\right ) + 2 \, b}{3 \, a}\right )\right ) - 3 i \, \sqrt {2} a^{\frac {3}{2}} {\rm weierstrassZeta}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, \frac {3 \, a \cos \left (d x + c\right ) - 3 i \, a \sin \left (d x + c\right ) + 2 \, b}{3 \, a}\right )\right )}{3 \, a d} \]

[In]

integrate((a+b*sec(d*x+c))^(1/2)/sec(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

1/3*(-I*sqrt(2)*sqrt(a)*b*weierstrassPInverse(-4/3*(3*a^2 - 4*b^2)/a^2, 8/27*(9*a^2*b - 8*b^3)/a^3, 1/3*(3*a*c
os(d*x + c) + 3*I*a*sin(d*x + c) + 2*b)/a) + I*sqrt(2)*sqrt(a)*b*weierstrassPInverse(-4/3*(3*a^2 - 4*b^2)/a^2,
 8/27*(9*a^2*b - 8*b^3)/a^3, 1/3*(3*a*cos(d*x + c) - 3*I*a*sin(d*x + c) + 2*b)/a) + 3*I*sqrt(2)*a^(3/2)*weiers
trassZeta(-4/3*(3*a^2 - 4*b^2)/a^2, 8/27*(9*a^2*b - 8*b^3)/a^3, weierstrassPInverse(-4/3*(3*a^2 - 4*b^2)/a^2,
8/27*(9*a^2*b - 8*b^3)/a^3, 1/3*(3*a*cos(d*x + c) + 3*I*a*sin(d*x + c) + 2*b)/a)) - 3*I*sqrt(2)*a^(3/2)*weiers
trassZeta(-4/3*(3*a^2 - 4*b^2)/a^2, 8/27*(9*a^2*b - 8*b^3)/a^3, weierstrassPInverse(-4/3*(3*a^2 - 4*b^2)/a^2,
8/27*(9*a^2*b - 8*b^3)/a^3, 1/3*(3*a*cos(d*x + c) - 3*I*a*sin(d*x + c) + 2*b)/a)))/(a*d)

Sympy [F]

\[ \int \frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {\sec (c+d x)}} \, dx=\int \frac {\sqrt {a + b \sec {\left (c + d x \right )}}}{\sqrt {\sec {\left (c + d x \right )}}}\, dx \]

[In]

integrate((a+b*sec(d*x+c))**(1/2)/sec(d*x+c)**(1/2),x)

[Out]

Integral(sqrt(a + b*sec(c + d*x))/sqrt(sec(c + d*x)), x)

Maxima [F]

\[ \int \frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {\sec (c+d x)}} \, dx=\int { \frac {\sqrt {b \sec \left (d x + c\right ) + a}}{\sqrt {\sec \left (d x + c\right )}} \,d x } \]

[In]

integrate((a+b*sec(d*x+c))^(1/2)/sec(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(b*sec(d*x + c) + a)/sqrt(sec(d*x + c)), x)

Giac [F]

\[ \int \frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {\sec (c+d x)}} \, dx=\int { \frac {\sqrt {b \sec \left (d x + c\right ) + a}}{\sqrt {\sec \left (d x + c\right )}} \,d x } \]

[In]

integrate((a+b*sec(d*x+c))^(1/2)/sec(d*x+c)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(b*sec(d*x + c) + a)/sqrt(sec(d*x + c)), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {\sec (c+d x)}} \, dx=\int \frac {\sqrt {a+\frac {b}{\cos \left (c+d\,x\right )}}}{\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}} \,d x \]

[In]

int((a + b/cos(c + d*x))^(1/2)/(1/cos(c + d*x))^(1/2),x)

[Out]

int((a + b/cos(c + d*x))^(1/2)/(1/cos(c + d*x))^(1/2), x)